Package index
-
Anderson2010
- 27 experimental studies from anderson2010violent;textualRoBMA that meet the best practice criteria
-
Andrews2021
- 36 estimates of the effect of household chaos on child executive functions with the mean age and assessment type covariates from a meta-analysis by andrews2021examining;textualRoBMA
-
Bem2011
- 9 experimental studies from bem2011feeling;textualRoBMA as described in bem2011must;textualRoBMA
-
BiBMA()
- Estimate a Bayesian Model-Averaged Meta-Analysis of Binomial Data
-
check_RoBMA()
check_RoBMA_convergence()
- Check fitted RoBMA object for errors and warnings
-
check_setup.BiBMA()
- Prints summary of
"BiBMA.reg"
ensemble implied by the specified priors and formula
-
check_setup()
check_setup.RoBMA()
- Prints summary of
"RoBMA"
ensemble implied by the specified priors
-
check_setup.reg()
check_setup.RoBMA.reg()
- Prints summary of
"RoBMA.reg"
ensemble implied by the specified priors and formula
-
combine_data()
- Combines different effect sizes into a common metric
-
contr.independent()
- Independent contrast matrix
-
contr.meandif()
- Mean difference contrast matrix
-
contr.orthonormal()
- Orthornomal contrast matrix
-
diagnostics()
diagnostics_autocorrelation()
diagnostics_trace()
diagnostics_density()
- Checks a fitted RoBMA object
-
d2r()
d2z()
d2logOR()
d2OR()
r2d()
r2z()
r2logOR()
r2OR()
z2r()
z2d()
z2logOR()
z2OR()
logOR2r()
logOR2z()
logOR2d()
logOR2OR()
OR2r()
OR2z()
OR2logOR()
OR2d()
- Effect size transformations
-
forest()
- Forest plot for a RoBMA object
-
interpret()
- Interprets results of a RoBMA model.
-
is.RoBMA()
is.RoBMA.reg()
is.NoBMA()
is.NoBMA.reg()
is.BiBMA()
- Reports whether x is a RoBMA object
-
Kroupova2021
- 881 estimates from 69 studies of a relationship between employment and educational outcomes collected by kroupova2021student;textualRoBMA
-
Lui2015
- 18 studies of a relationship between acculturation mismatch and intergenerational cultural conflict collected by lui2015intergenerational;textualRoBMA
-
marginal_plot()
- Plots marginal estimates of a fitted RoBMA regression object
-
marginal_summary()
- Summarize marginal estimates of a fitted RoBMA regression object
-
NoBMA()
- Estimate a Bayesian Model-Averaged Meta-Analysis
-
NoBMA.reg()
- Estimate a Bayesian Model-Averaged Meta-Regression
-
plot(<RoBMA>)
- Plots a fitted RoBMA object
-
plot_models()
- Models plot for a RoBMA object
-
Poulsen2006
- 5 studies with a tactile outcome assessment from poulsen2006potassium;textualRoBMA of the effect of potassium-containing toothpaste on dentine hypersensitivity
-
print(<marginal_summary.RoBMA>)
- Prints marginal_summary object for RoBMA method
-
print(<RoBMA>)
- Prints a fitted RoBMA object
-
print(<summary.RoBMA>)
- Prints summary object for RoBMA method
-
prior()
- Creates a prior distribution
-
prior_factor()
- Creates a prior distribution for factors
-
prior_informed()
- Creates an informed prior distribution based on research
-
prior_none()
- Creates a prior distribution
-
prior_PEESE()
- Creates a prior distribution for PET or PEESE models
-
prior_PET()
- Creates a prior distribution for PET or PEESE models
-
prior_weightfunction()
- Creates a prior distribution for a weight function
-
RoBMA-package
RoBMA_package
RoBMA.package
- RoBMA: Robust Bayesian meta-analysis
-
RoBMA()
- Estimate a Robust Bayesian Meta-Analysis
-
RoBMA.reg()
- Estimate a Robust Bayesian Meta-Analysis Meta-Regression
-
set_autofit_control()
set_convergence_checks()
- Control MCMC fitting process
-
RoBMA.options()
RoBMA.get_option()
- Options for the RoBMA package
-
set_default_priors()
- Set default prior distributions
-
se_d2se_logOR()
se_d2se_r()
se_r2se_d()
se_logOR2se_d()
se_d2se_z()
se_r2se_z()
se_r2se_logOR()
se_logOR2se_r()
se_logOR2se_z()
se_z2se_d()
se_z2se_r()
se_z2se_logOR()
- Standard errors transformations
-
summary(<RoBMA>)
- Summarize fitted RoBMA object
-
summary_heterogeneity()
- Summarizes heterogeneity of a RoBMA model
-
update(<BiBMA>)
- Updates a fitted BiBMA object
-
update(<RoBMA>)
- Updates a fitted RoBMA object
-
weighted_multivariate_normal
- Weighted multivariate normal distribution