Package index
-
adjusted_effect() - Compute adjusted effect size
-
Anderson2010 - 27 experimental studies from Anderson et al. (2010) that meet the best practice criteria
-
Andrews2021 - 36 estimates of the effect of household chaos on child executive functions with the mean age and assessment type covariates from a meta-analysis by Andrews et al. (2021)
-
as_zcurve() - Transform RoBMA object into z-curve
-
Bem2011 - 9 experimental studies from Bem (2011) as described in Bem et al. (2011)
-
BiBMA() - Estimate a Bayesian Model-Averaged Meta-Analysis of Binomial Data
-
BiBMA.reg() - Estimate a Robust Bayesian Meta-Analysis Meta-Regression
-
check_RoBMA()check_RoBMA_convergence() - Check fitted RoBMA object for errors and warnings
-
check_setup.BiBMA() - Prints summary of
"BiBMA.reg"ensemble implied by the specified priors and formula
-
check_setup()check_setup.RoBMA() - Prints summary of
"RoBMA"ensemble implied by the specified priors
-
check_setup.reg()check_setup.RoBMA.reg() - Prints summary of
"RoBMA.reg"ensemble implied by the specified priors and formula
-
combine_data() - Combines different effect sizes into a common metric
-
contr.orthonormal()contr.meandif()contr.independent() - BayesTools Contrast Matrices
-
diagnostics()diagnostics_autocorrelation()diagnostics_trace()diagnostics_density() - Checks a fitted RoBMA object
-
d2r()d2z()d2logOR()d2OR()r2d()r2z()r2logOR()r2OR()z2r()z2d()z2logOR()z2OR()logOR2r()logOR2z()logOR2d()logOR2OR()OR2r()OR2z()OR2logOR()OR2d() - Effect size transformations
-
extract_posterior() - Extract Posterior Samples from a RoBMA Model
-
forest() - Forest plot for a RoBMA object
-
funnel() - Funnel plot for a RoBMA object
-
hist(<zcurve_RoBMA>) - Create Histogram of Z-Statistics
-
Hoppen2025 - 37 studies from a meta-analysis of social comparison as a behavior change technique by Hoppen et al. (2025)
-
interpret() - Interprets results of a RoBMA model.
-
is.RoBMA()is.RoBMA.reg()is.NoBMA()is.NoBMA.reg()is.BiBMA()is.BiBMA.reg() - Reports whether x is a RoBMA object
-
Kroupova2021 - 881 estimates from 69 studies of a relationship between employment and educational outcomes collected by Kroupova et al. (2021)
-
lines(<zcurve_RoBMA>) - Add Lines With Posterior Predictive Distribution of Z-Statistics
-
Lui2015 - 18 studies of a relationship between acculturation mismatch and intergenerational cultural conflict collected by Lui (2015)
-
ManyLabs16 - 55 effect sizes from Many Labs 2 replication studies of Tversky and Kahneman (1981) framing effects
-
marginal_plot() - Plots marginal estimates of a fitted RoBMA regression object
-
marginal_summary() - Summarize marginal estimates of a fitted RoBMA regression object
-
NoBMA() - Estimate a Bayesian Model-Averaged Meta-Analysis
-
NoBMA.reg() - Estimate a Bayesian Model-Averaged Meta-Regression
-
plot(<RoBMA>) - Plots a fitted RoBMA object
-
plot(<zcurve_RoBMA>) - Create Z-Curve Meta-Analytic Plot
-
plot_models() - Models plot for a RoBMA object
-
pooled_effect() - Compute pooled effect size
-
Poulsen2006 - 5 studies with a tactile outcome assessment from Poulsen et al. (2006) of the effect of potassium-containing toothpaste on dentine hypersensitivity
-
predict(<RoBMA>) - Predict method for Robust Bayesian Meta-Analysis Fits
-
print(<marginal_summary.RoBMA>) - Prints marginal_summary object for RoBMA method
-
print(<RoBMA>) - Prints a fitted RoBMA object
-
print(<summary.RoBMA>) - Prints summary object for RoBMA method
-
print(<summary.zcurve_RoBMA>) - Prints summary object for zcurve_RoBMA method
-
print(<zcurve_RoBMA>) - Prints a fitted zcurve_RoBMA object
-
prior() - Creates a prior distribution
-
prior_factor() - Creates a prior distribution for factors
-
prior_informed() - Creates an informed prior distribution based on research
-
prior_none() - Creates a prior distribution
-
prior_PEESE() - Creates a prior distribution for PET or PEESE models
-
prior_PET() - Creates a prior distribution for PET or PEESE models
-
prior_weightfunction() - Creates a prior distribution for a weight function
-
residuals(<RoBMA>) - Extract method for Robust Bayesian Meta-Analysis Fits
-
RoBMA-packageRoBMA_packageRoBMA.package - RoBMA: Robust Bayesian meta-analysis
-
RoBMA() - Estimate a Robust Bayesian Meta-Analysis
-
RoBMA.reg() - Estimate a Robust Bayesian Meta-Analysis Meta-Regression
-
set_autofit_control()set_convergence_checks() - Control MCMC fitting process
-
RoBMA.options()RoBMA.get_option() - Options for the RoBMA package
-
set_default_binomial_priors() - Set default prior distributions for binomial meta-analytic models
-
set_default_priors() - Set default prior distributions
-
se_d2se_logOR()se_d2se_r()se_r2se_d()se_logOR2se_d()se_d2se_z()se_r2se_z()se_r2se_logOR()se_logOR2se_r()se_logOR2se_z()se_z2se_d()se_z2se_r()se_z2se_logOR() - Standard errors transformations
-
summary(<RoBMA>) - Summarize fitted RoBMA object
-
summary(<zcurve_RoBMA>) - Summarize fitted zcurve_RoBMA object
-
summary_heterogeneity() - Summarizes heterogeneity of a RoBMA model
-
true_effects() - Compute estimated true effect sizes
-
update(<BiBMA>) - Updates a fitted BiBMA object
-
update(<RoBMA>) - Updates a fitted RoBMA object
-
Wang2025 - 70 effect sizes from a meta-analysis of ChatGPT's impact on student learning by Wang and Fan (2025)
-
weighted_multivariate_normal - Weighted multivariate normal distribution
-
Weingarten2018 - 582 effect sizes examining the ease-of-retrieval effect from a meta-analysis by Weingarten and Hutchinson (2018)