diagnostics creates visual
checks of individual models convergence. Numerical
overview of individual models can be obtained by
summary(object, type = "models", diagnostics = TRUE),
or even more detailed information by
summary(object, type = "individual").
Usage
diagnostics(
  fit,
  parameter,
  type,
  plot_type = "base",
  show_models = NULL,
  lags = 30,
  title = is.null(show_models) | length(show_models) > 1,
  ...
)
diagnostics_autocorrelation(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  lags = 30,
  title = is.null(show_models) | length(show_models) > 1,
  ...
)
diagnostics_trace(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  title = is.null(show_models) | length(show_models) > 1,
  ...
)
diagnostics_density(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  title = is.null(show_models) | length(show_models) > 1,
  ...
)Arguments
- fit
 a fitted RoBMA object
- parameter
 a parameter to be plotted. Either
"mu","tau","omega","PET", or"PEESE".- type
 type of MCMC diagnostic to be plotted. Options are
"chains"for the chains' trace plots,"autocorrelation"for autocorrelation of the chains, and"densities"for the overlaying densities of the individual chains. Can be abbreviated to first letters.- plot_type
 whether to use a base plot
"base"or ggplot2"ggplot"for plotting. Defaults to"base".- show_models
 MCMC diagnostics of which models should be plotted. Defaults to
NULLwhich plots MCMC diagnostics for a specified parameter for every model that is part of the ensemble.- lags
 number of lags to be shown for
type = "autocorrelation". Defaults to30.- title
 whether the model number should be displayed in title. Defaults to
TRUEwhen more than one model is selected.- ...
 additional arguments to be passed to par if
plot_type = "base".
Value
diagnostics returns either NULL if plot_type = "base"
or an object/list of objects (depending on the number of parameters to be plotted)
of class 'ggplot2' if plot_type = "ggplot2".
Details
The visualization functions are based on stan_plot function and its color schemes.
Examples
if (FALSE) { # \dontrun{
# using the example data from Anderson et al. 2010 and fitting the default model
# (note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)
### ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
# diagnostics function allows to visualize diagnostics of a fitted RoBMA object, for example,
# the trace plot for the mean parameter in each model model
diagnostics(fit, parameter = "mu", type = "chain")
# in order to show the trace plot only for the 11th model, add show_models parameter
diagnostics(fit, parameter = "mu", type = "chain", show_models = 11)
# furthermore, the autocorrelations
diagnostics(fit, parameter = "mu", type = "autocorrelation")
# and overlying densities for each plot can also be visualize
diagnostics(fit, parameter = "mu", type = "densities")
} # }