plot.RoBMA allows to visualize
different "RoBMA" object parameters in various
ways. See type for the different model types.
Usage
# S3 method for class 'RoBMA'
plot(
  x,
  parameter = "mu",
  conditional = FALSE,
  plot_type = "base",
  prior = FALSE,
  output_scale = NULL,
  rescale_x = FALSE,
  show_data = TRUE,
  dots_prior = NULL,
  ...
)Arguments
- x
 a fitted RoBMA object
- parameter
 a parameter to be plotted. Defaults to
"mu"(for the effect size). The additional options are"tau"(for the heterogeneity),"weightfunction"(for the estimated weightfunction), or"PET-PEESE"(for the PET-PEESE regression).- conditional
 whether conditional estimates should be plotted. Defaults to
FALSEwhich plots the model-averaged estimates. Note that both"weightfunction"and"PET-PEESE"are always ignoring the other type of publication bias adjustment.- plot_type
 whether to use a base plot
"base"or ggplot2"ggplot"for plotting. Defaults to"base".- prior
 whether prior distribution should be added to figure. Defaults to
FALSE.- output_scale
 transform the effect sizes and the meta-analytic effect size estimate to a different scale. Defaults to
NULLwhich returns the same scale as the model was estimated on.- rescale_x
 whether the x-axis of the
"weightfunction"should be re-scaled to make the x-ticks equally spaced. Defaults toFALSE.- show_data
 whether the study estimates and standard errors should be show in the
"PET-PEESE"plot. Defaults toTRUE.- dots_prior
 list of additional graphical arguments to be passed to the plotting function of the prior distribution. Supported arguments are
lwd,lty,col, andcol.fill, to adjust the line thickness, line type, line color, and fill color of the prior distribution respectively.- ...
 list of additional graphical arguments to be passed to the plotting function. Supported arguments are
lwd,lty,col,col.fill,xlab,ylab,main,xlim,ylimto adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.
Value
plot.RoBMA returns either NULL if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2".
Examples
if (FALSE) { # \dontrun{
# using the example data from Anderson et al. 2010 and fitting the default model
# (note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)
### ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
# the 'plot' function allows to visualize the results of a fitted RoBMA object, for example;
# the model-averaged effect size estimate
plot(fit, parameter = "mu")
# and show both the prior and posterior distribution
plot(fit, parameter = "mu", prior = TRUE)
# conditional plots can by obtained by specifying
plot(fit, parameter = "mu", conditional = TRUE)
# plotting function also allows to visualize the weight function
plot(fit, parameter = "weightfunction")
# re-scale the x-axis
plot(fit, parameter = "weightfunction", rescale_x = TRUE)
# or visualize the PET-PEESE regression line
plot(fit, parameter = "PET-PEESE")
} # }