marginal_plot
allows to visualize prior and
posterior distributions of marginal estimates of a RoBMA regression model.
marginal_plot(
x,
parameter,
conditional = FALSE,
plot_type = "base",
prior = FALSE,
output_scale = NULL,
dots_prior = NULL,
...
)
a fitted RoBMA regression object
regression parameter to be plotted
whether conditional marginal estimates should be
plotted. Defaults to FALSE
which plots the model-averaged
estimates.
whether to use a base plot "base"
or ggplot2 "ggplot"
for plotting. Defaults to
"base"
.
whether prior distribution should be added to
figure. Defaults to FALSE
.
transform the effect sizes and the meta-analytic
effect size estimate to a different scale. Defaults to NULL
which returns the same scale as the model was estimated on.
list of additional graphical arguments
to be passed to the plotting function of the prior
distribution. Supported arguments are lwd
,
lty
, col
, and col.fill
, to adjust
the line thickness, line type, line color, and fill color
of the prior distribution respectively.
list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are lwd
, lty
, col
, col.fill
,
xlab
, ylab
, main
, xlim
, ylim
to adjust the line thickness, line type, line color, fill color,
x-label, y-label, title, x-axis range, and y-axis range
respectively.
plot.RoBMA
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.