marginal_plot
allows to visualize prior and
posterior distributions of marginal estimates of a RoBMA regression model.
Usage
marginal_plot(
x,
parameter,
conditional = FALSE,
plot_type = "base",
prior = FALSE,
output_scale = NULL,
dots_prior = NULL,
...
)
Arguments
- x
a fitted RoBMA regression object
- parameter
regression parameter to be plotted
- conditional
whether conditional marginal estimates should be plotted. Defaults to
FALSE
which plots the model-averaged estimates.- plot_type
whether to use a base plot
"base"
or ggplot2"ggplot"
for plotting. Defaults to"base"
.- prior
whether prior distribution should be added to figure. Defaults to
FALSE
.- output_scale
transform the effect sizes and the meta-analytic effect size estimate to a different scale. Defaults to
NULL
which returns the same scale as the model was estimated on.- dots_prior
list of additional graphical arguments to be passed to the plotting function of the prior distribution. Supported arguments are
lwd
,lty
,col
, andcol.fill
, to adjust the line thickness, line type, line color, and fill color of the prior distribution respectively.- ...
list of additional graphical arguments to be passed to the plotting function. Supported arguments are
lwd
,lty
,col
,col.fill
,xlab
,ylab
,main
,xlim
,ylim
to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.
Value
plot.RoBMA
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.