Prints summary of "BiBMA.reg" ensemble implied by the specified priors and formula
      Source: R/check-input-and-settings.R
      check_setup.BiBMA.Rdcheck_setup prints summary of "RoBMA.reg" ensemble
implied by the specified prior distributions. It is useful for checking
the ensemble configuration prior to fitting all of the models.
Usage
check_setup.BiBMA(
  priors_effect = prior(distribution = "student", parameters = list(location = 0, scale =
    0.58, df = 4)),
  priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1.77,
    scale = 0.55)),
  priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
  priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
    0)),
  priors_baseline = NULL,
  priors_baseline_null = prior_factor("beta", parameters = list(alpha = 1, beta = 1),
    contrast = "independent"),
  models = FALSE,
  silent = FALSE,
  ...
)Arguments
- priors_effect
 list of prior distributions for the effect size (
mu) parameter that will be treated as belonging to the alternative hypothesis. Defaults toprior(distribution = "student", parameters = list(location = 0, scale = 0.58, df = 4)), based on logOR meta-analytic estimates from the Cochrane Database of Systematic Reviews (Bartoš et al. 2023) .- priors_heterogeneity
 list of prior distributions for the heterogeneity
tauparameter that will be treated as belonging to the alternative hypothesis. Defaults toprior(distribution = "invgamma", parameters = list(shape = 1.77, scale = 0.55))that is based on heterogeneities of logOR estimates from the Cochrane Database of Systematic Reviews (Bartoš et al. 2023) .- priors_effect_null
 list of prior distributions for the effect size (
mu) parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero,prior(distribution = "point", parameters = list(location = 0)).- priors_heterogeneity_null
 list of prior distributions for the heterogeneity
tauparameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero (a fixed effect meta-analytic models),prior(distribution = "point", parameters = list(location = 0)).- priors_baseline
 prior distributions for the alternative hypothesis about intercepts (
pi) of each study. Defaults toNULL.- priors_baseline_null
 prior distributions for the null hypothesis about intercepts (
pi) for each study. Defaults to an independent uniform prior distribution for each interceptprior("beta", parameters = list(alpha = 1, beta = 1), contrast = "independent").- models
 should the models' details be printed.
- silent
 whether all print messages regarding the fitting process should be suppressed. Defaults to
TRUE. Note thatparallel = TRUEalso suppresses all messages.- ...
 additional arguments.