NoBMA.reg is a wrapper around RoBMA.reg() that can
be used to estimate a publication bias unadjusted Bayesian
model-averaged meta-regression. The interface allows a complete customization of
the ensemble with different prior (or list of prior) distributions
for each component.
Usage
NoBMA.reg(
  formula,
  data,
  test_predictors = TRUE,
  study_names = NULL,
  study_ids = NULL,
  transformation = if (any(colnames(data) != "y")) "fishers_z" else "none",
  prior_scale = if (any(colnames(data) != "y")) "cohens_d" else "none",
  standardize_predictors = TRUE,
  priors = NULL,
  model_type = NULL,
  rescale_priors = 1,
  priors_effect = set_default_priors("effect", rescale = rescale_priors),
  priors_heterogeneity = set_default_priors("heterogeneity", rescale = rescale_priors),
  priors_effect_null = set_default_priors("effect", null = TRUE),
  priors_heterogeneity_null = set_default_priors("heterogeneity", null = TRUE),
  priors_hierarchical = set_default_priors("hierarchical"),
  priors_hierarchical_null = set_default_priors("hierarchical", null = TRUE),
  prior_covariates = set_default_priors("covariates", rescale = rescale_priors),
  prior_covariates_null = set_default_priors("covariates", null = TRUE),
  prior_factors = set_default_priors("factors", rescale = rescale_priors),
  prior_factors_null = set_default_priors("factors", null = TRUE),
  algorithm = "bridge",
  chains = 3,
  sample = 5000,
  burnin = 2000,
  adapt = 500,
  thin = 1,
  parallel = FALSE,
  autofit = TRUE,
  autofit_control = set_autofit_control(),
  convergence_checks = set_convergence_checks(),
  save = "all",
  seed = NULL,
  silent = TRUE,
  ...
)Arguments
- formula
 a formula for the meta-regression model
- data
 a data.frame containing the data for the meta-regression. Note that the column names have to correspond to the effect sizes (
d,logOR,OR,r,z), a measure of sampling variability (se,v,n,lCI,uCI,t), and the predictors. Seecombine_data()for a complete list of reserved names and additional information about specifying input data.- test_predictors
 vector of predictor names to test for the presence of moderation (i.e., assigned both the null and alternative prior distributions). Defaults to
TRUE, all predictors are tested using the default prior distributions (i.e.,prior_covariates,prior_covariates_null,prior_factors, andprior_factors_null). To only estimate and adjust for the effect of predictors useFALSE. Ifpriorsis specified, any settings intest_predictorsis overridden.- study_names
 an optional argument with the names of the studies
- study_ids
 an optional argument specifying dependency between the studies (for using a multilevel model). Defaults to
NULLfor studies being independent.- transformation
 transformation to be applied to the supplied effect sizes before fitting the individual models. Defaults to
"fishers_z". We highly recommend using"fishers_z"transformation since it is the only variance stabilizing measure and does not bias PET and PEESE style models. The other options are"cohens_d", correlation coefficient"r"and"logOR". Supplying"none"will treat the effect sizes as unstandardized and refrain from any transformations.- prior_scale
 an effect size scale used to define priors. Defaults to
"cohens_d". Other options are"fishers_z", correlation coefficient"r", and"logOR". The prior scale does not need to match the effect sizes measure - the samples from prior distributions are internally transformed to match thetransformationof the data. Theprior_scalecorresponds to the effect size scale of default output, but can be changed within the summary function.- standardize_predictors
 whether continuous predictors should be standardized prior to estimating the model. Defaults to
TRUE. Continuous predictor standardization is important for applying the default prior distributions for continuous predictors. Note that the resulting output corresponds to standardized meta-regression coefficients.- priors
 named list of prior distributions for each predictor (with names corresponding to the predictors). It allows users to specify both the null and alternative hypothesis prior distributions for each predictor by assigning the corresponding element of the named list with another named list (with
"null"and"alt"). If only one prior is specified for a given parameter, it is assumed to correspond to the alternative hypotheses and the default null hypothesis is specified (i.e.,prior_covariates_nullorprior_factors_null). If a named list with only one named prior distribution is provided (either"null"or"alt"), only this prior distribution is used and no default distribution is filled in. Parameters without specified prior distributions are assumed to be only adjusted for using the default alternative hypothesis prior distributions (i.e.,prior_covariatesorprior_factors). Ifpriorsis specified,test_predictorsis ignored.- model_type
 string specifying the RoBMA ensemble. Defaults to
NULL. The other options are"PSMA","PP", and"2w"which override settings passed to thepriors_effect,priors_heterogeneity,priors_effect,priors_effect_null,priors_heterogeneity_null,priors_bias_null, andpriors_effect. See details for more information about the different model types.- rescale_priors
 a re-scaling factor for the prior distributions. The re-scaling factor allows to adjust the width of all default priors simultaneously. Defaults to
1.- priors_effect
 list of prior distributions for the effect size (
mu) parameter that will be treated as belonging to the alternative hypothesis. Defaults to a standard normal distributionprior(distribution = "normal", parameters = list(mean = 0, sd = 1)).- priors_heterogeneity
 list of prior distributions for the heterogeneity
tauparameter that will be treated as belonging to the alternative hypothesis. Defaults toprior(distribution = "invgamma", parameters = list(shape = 1, scale = .15))that is based on heterogeneities estimates from psychology (van Erp et al. 2017) .- priors_effect_null
 list of prior distributions for the effect size (
mu) parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero,prior(distribution = "point", parameters = list(location = 0)).- priors_heterogeneity_null
 list of prior distributions for the heterogeneity
tauparameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero (a fixed effect meta-analytic models),prior(distribution = "point", parameters = list(location = 0)).- priors_hierarchical
 list of prior distributions for the correlation of random effects (
rho) parameter that will be treated as belonging to the alternative hypothesis. This setting allows users to fit a hierarchical (three-level) meta-analysis whenstudy_idsare supplied. Note that this is an experimental feature and see News for more details. Defaults to a beta distributionprior(distribution = "beta", parameters = list(alpha = 1, beta = 1)).- priors_hierarchical_null
 list of prior distributions for the correlation of random effects (
rho) parameter that will be treated as belonging to the null hypothesis. Defaults toNULL.- prior_covariates
 a prior distributions for the regression parameter of continuous covariates on the effect size under the alternative hypothesis (unless set explicitly in
priors). Defaults to a relatively wide normal distributionprior(distribution = "normal", parameters = list(mean = 0, sd = 0.25)).- prior_covariates_null
 a prior distributions for the regression parameter of continuous covariates on the effect size under the null hypothesis (unless set explicitly in
priors). Defaults to a no effectprior("spike", parameters = list(location = 0)).- prior_factors
 a prior distributions for the regression parameter of categorical covariates on the effect size under the alternative hypothesis (unless set explicitly in
priors). Defaults to a relatively wide multivariate normal distribution specifying differences from the mean contrastsprior_factor("mnormal", parameters = list(mean = 0, sd = 0.25), contrast = "meandif").- prior_factors_null
 a prior distributions for the regression parameter of categorical covariates on the effect size under the null hypothesis (unless set explicitly in
priors). Defaults to a no effectprior("spike", parameters = list(location = 0)).- algorithm
 a string specifying the algorithm used for the model averaging. Defaults to
"bridge"which results in estimating individual models using JAGS and computing the marginal likelihood using bridge sampling. An alternative is"ss"which uses spike and slab like parameterization to approximate the Bayesian model averaging with a single model. Note that significantly moresample,burnin, andadaptiterations are needed for the"ss"algorithm.- chains
 a number of chains of the MCMC algorithm.
- sample
 a number of sampling iterations of the MCMC algorithm. Defaults to
5000.- burnin
 a number of burnin iterations of the MCMC algorithm. Defaults to
2000.- adapt
 a number of adaptation iterations of the MCMC algorithm. Defaults to
500.- thin
 a thinning of the chains of the MCMC algorithm. Defaults to
1.- parallel
 whether the individual models should be fitted in parallel. Defaults to
FALSE. The implementation is not completely stable and might cause a connection error.- autofit
 whether the model should be fitted until the convergence criteria (specified in
autofit_control) are satisfied. Defaults toTRUE.- autofit_control
 allows to pass autofit control settings with the
set_autofit_control()function. See?set_autofit_controlfor options and default settings.- convergence_checks
 automatic convergence checks to assess the fitted models, passed with
set_convergence_checks()function. See?set_convergence_checksfor options and default settings.- save
 whether all models posterior distributions should be kept after obtaining a model-averaged result. Defaults to
"all"which does not remove anything. Set to"min"to significantly reduce the size of final object, however, some model diagnostics and further manipulation with the object will not be possible.- seed
 a seed to be set before model fitting, marginal likelihood computation, and posterior mixing for reproducibility of results. Defaults to
NULL- no seed is set.- silent
 whether all print messages regarding the fitting process should be suppressed. Defaults to
TRUE. Note thatparallel = TRUEalso suppresses all messages.- ...
 additional arguments.
Details
See RoBMA.reg() for more details.
Note that these default prior distributions are relatively wide and more informed prior distributions for testing for the presence of moderation should be considered.