All functions

BayesTools _PACKAGE BayesTools-package

BayesTools

ensemble_estimates_table() ensemble_inference_table() ensemble_summary_table() ensemble_diagnostics_table() ensemble_estimates_empty_table() ensemble_inference_empty_table() ensemble_summary_empty_table() ensemble_diagnostics_empty_table() marginal_estimates_table()

Create BayesTools ensemble summary tables

model_summary_table() runjags_estimates_table() runjags_inference_table() JAGS_estimates_table() JAGS_inference_table() JAGS_summary_table() model_summary_empty_table() runjags_estimates_empty_table() runjags_inference_empty_table() JAGS_estimates_empty_table() JAGS_inference_empty_table() stan_estimates_table()

Create BayesTools model tables

JAGS_add_priors()

Add 'JAGS' prior

JAGS_bridgesampling()

Compute marginal likelihood of a 'JAGS' model

JAGS_bridgesampling_posterior()

Prepare 'JAGS' posterior for 'bridgesampling'

JAGS_check_and_list_fit_settings() JAGS_check_and_list_autofit_settings()

Check and list 'JAGS' fitting settings

JAGS_check_convergence()

Assess convergence of a runjags model

JAGS_diagnostics() JAGS_diagnostics_density() JAGS_diagnostics_trace() JAGS_diagnostics_autocorrelation()

Plot diagnostics of a 'JAGS' model

JAGS_evaluate_formula()

Evaluate JAGS formula using posterior samples

JAGS_fit() JAGS_extend()

Fits a 'JAGS' model

JAGS_formula()

Create JAGS formula syntax and data object

JAGS_get_inits()

Create initial values for 'JAGS' model

JAGS_marglik_parameters() JAGS_marglik_parameters_formula()

Extract parameters for 'JAGS' priors

JAGS_marglik_priors() JAGS_marglik_priors_formula()

Compute marginal likelihood for 'JAGS' priors

JAGS_to_monitor()

Create list of monitored parameters for 'JAGS' model

Savage_Dickey_BF()

Compute Savage-Dickey inclusion Bayes factors

add_column()

Adds column to BayesTools table

bridgesampling_object()

Create a 'bridgesampling' object

check_bool() check_char() check_real() check_int() check_list()

Check input

contr.independent()

Independent contrast matrix

contr.meandif()

Mean difference contrast matrix

contr.orthonormal()

Orthornomal contrast matrix

density(<prior>)

Prior density

compute_inference() ensemble_inference() models_inference()

Compute posterior probabilities and inclusion Bayes factors

format_BF()

Format Bayes factor

geom_prior()

Add prior object to a ggplot

geom_prior_list()

Add list of prior objects to a plot

inclusion_BF()

Compute inclusion Bayes factors

interpret()

Interpret ensemble inference and estimates

is.prior() is.prior.point() is.prior.none() is.prior.simple() is.prior.discrete() is.prior.vector() is.prior.PET() is.prior.PEESE() is.prior.weightfunction() is.prior.factor() is.prior.orthonormal() is.prior.treatment() is.prior.independent() is.prior.spike_and_slab() is.prior.meandif()

Reports whether x is a a prior object

kitchen_rolls

Kitchen Rolls data from Wagenmakers et al. (2015) replication study.

lines(<prior>)

Add prior object to a plot

lines_prior_list()

Add list of prior objects to a plot

marginal_inference()

Model-average marginal posterior distributions and marginal Bayes factors

marginal_posterior()

Model-average marginal posterior distributions

mean(<prior>)

Prior mean

mix_posteriors()

Model-average posterior distributions

dmpoint() rmpoint() pmpoint() qmpoint()

Multivariate point mass distribution

format_parameter_names() JAGS_parameter_names()

Clean parameter names from JAGS

plot(<prior>)

Plots a prior object

plot_marginal()

Plot samples from the marginal posterior distributions

plot_models()

Plot estimates from models

plot_posterior()

Plot samples from the mixed posterior distributions

plot_prior_list()

Plot a list of prior distributions

dpoint() rpoint() ppoint() qpoint()

Point mass distribution

print(<BayesTools_table>)

Print a BayesTools table

print(<prior>)

Prints a prior object

prior() prior_none()

Creates a prior distribution

prior_PET() prior_PEESE()

Creates a prior distribution for PET or PEESE models

prior_factor()

Creates a prior distribution for factors

rng(<prior>) cdf(<prior>) ccdf(<prior>) lpdf(<prior>) pdf(<prior>) quant(<prior>) mcdf(<prior>) mccdf(<prior>) mlpdf(<prior>) mpdf(<prior>) mquant(<prior>)

Elementary prior related functions

rng() cdf() ccdf() quant() lpdf() pdf() mcdf() mccdf() mquant() mlpdf() mpdf()

Creates generics for common statistical functions

prior_informed()

Creates an informed prior distribution based on research

prior_informed_medicine_names

Names of medical subfields from the Cochrane database of systematic reviews

prior_spike_and_slab()

Creates a spike and slab prior distribution

prior_weightfunction()

Creates a prior distribution for a weight function

range(<prior>)

Prior range

remove_column()

Removes column to BayesTools table

sd()

Creates generic for sd function

sd(<prior>)

Prior sd

transform_factor_samples()

Transform factor posterior samples into differences from the mean

transform_meandif_samples()

Transform meandif posterior samples into differences from the mean

transform_orthonormal_samples()

Transform orthonomal posterior samples into differences from the mean

var()

Creates generic for var function

var(<prior>)

Prior var

mdone.sided() mdtwo.sided() mdone.sided_fixed() mdtwo.sided_fixed() rone.sided() rtwo.sided() rone.sided_fixed() rtwo.sided_fixed() mpone.sided() mptwo.sided() mpone.sided_fixed() mptwo.sided_fixed() mqone.sided() mqtwo.sided() mqone.sided_fixed() mqtwo.sided_fixed()

Weight functions

weightfunctions_mapping()

Create coefficient mapping between multiple weightfunctions