Marginal density, marginal distribution function, marginal quantile function and random generation for weight functions.
mdone.sided(x, alpha = NULL, alpha1 = NULL, alpha2 = NULL, log = FALSE)
mdtwo.sided(x, alpha, log = FALSE)
mdone.sided_fixed(x, omega, log = FALSE)
mdtwo.sided_fixed(x, omega, log = FALSE)
rone.sided(n, alpha = NULL, alpha1 = NULL, alpha2 = NULL)
rtwo.sided(n, alpha)
rone.sided_fixed(n, omega)
rtwo.sided_fixed(n, omega)
mpone.sided(
q,
alpha = NULL,
alpha1 = NULL,
alpha2 = NULL,
lower.tail = TRUE,
log.p = FALSE
)
mptwo.sided(q, alpha, lower.tail = TRUE, log.p = FALSE)
mpone.sided_fixed(q, omega, lower.tail = TRUE, log.p = FALSE)
mptwo.sided_fixed(q, omega, lower.tail = TRUE, log.p = FALSE)
mqone.sided(
p,
alpha = NULL,
alpha1 = NULL,
alpha2 = NULL,
lower.tail = TRUE,
log.p = FALSE
)
mqtwo.sided(p, alpha, lower.tail = TRUE, log.p = FALSE)
mqone.sided_fixed(p, omega, lower.tail = TRUE, log.p = FALSE)
mqtwo.sided_fixed(p, omega, lower.tail = TRUE, log.p = FALSE)
vector or matrix of quantiles.
vector or matrix with concentration parameters for the Dirichlet distribution for a monotonic one.sided or a two.sided weight function.
vector or matrix with concentration parameters for the Dirichlet distribution for the expected direction of non-monotonic one.sided of weight function.
vector or matrix with concentration parameters for the Dirichlet distribution for the unexpected direction of non-monotonic one.sided of weight function.
logical; if TRUE
, probabilities
p
are given as log(p)
.
vector or matrix of fixed probabilities for a one.sided or a two.sided weight function.
number of observations.
logical; if TRUE
(default), probabilities
are \(P[X \le x]\), otherwise, \(P[X \ge x]\).
vector of probabilities.
mdone.sided
, mdtwo.sided
, mdone.sided_fixed
,
and mdtwo.sided_fixed
give the marginal density,
mpone.sided
, mptwo.sided
, mpone.sided_fixed
,
and mptwo.sided_fixed
give the marginal distribution function,
mqone.sided
, mqtwo.sided
, mqone.sided_fixed
,
and mqtwo.sided_fixed
give the marginal quantile function,
and rone.sided
, rtwo.sided
, rone.sided_fixed
,
and rtwo.sided_fixed
generate random deviates.
# draw samples from a two-sided weight function
rtwo.sided(10, alpha = c(1, 1))
#> [,1] [,2]
#> [1,] 0.12611583 1
#> [2,] 0.51534922 1
#> [3,] 0.03324472 1
#> [4,] 0.97880318 1
#> [5,] 0.66200138 1
#> [6,] 0.23208479 1
#> [7,] 0.60225018 1
#> [8,] 0.17453822 1
#> [9,] 0.06221212 1
#> [10,] 0.37187054 1
# draw samples from a monotone one-sided weight function
rone.sided(10, alpha = c(1, 1, 1))
#> [,1] [,2] [,3]
#> [1,] 0.02844068 0.3728764 1
#> [2,] 0.10806776 0.2480280 1
#> [3,] 0.15144097 0.5899361 1
#> [4,] 0.10568851 0.9009349 1
#> [5,] 0.33952178 0.5137405 1
#> [6,] 0.23279764 0.2461865 1
#> [7,] 0.15653629 0.5081128 1
#> [8,] 0.05559802 0.8646450 1
#> [9,] 0.40491313 0.7842544 1
#> [10,] 0.55901682 0.6358587 1
# draw samples from a non-monotone one-sided weight function
rone.sided(10, alpha1 = c(1, 1), alpha2 = c(1, 1))
#> [,1] [,2] [,3]
#> [1,] 0.9419421 0.92517218 1
#> [2,] 0.9961456 0.90340682 1
#> [3,] 0.4788879 0.11089356 1
#> [4,] 0.3258951 0.22523054 1
#> [5,] 0.7985171 0.42015953 1
#> [6,] 0.9908227 0.23165217 1
#> [7,] 0.9782998 0.55791991 1
#> [8,] 0.9070065 0.55229814 1
#> [9,] 0.7060430 0.20216529 1
#> [10,] 0.9672913 0.01495326 1