Marginal density, marginal distribution function, marginal quantile function and random generation for weight functions.
mdone.sided(x, alpha = NULL, alpha1 = NULL, alpha2 = NULL, log = FALSE)
mdtwo.sided(x, alpha, log = FALSE)
mdone.sided_fixed(x, omega, log = FALSE)
mdtwo.sided_fixed(x, omega, log = FALSE)
rone.sided(n, alpha = NULL, alpha1 = NULL, alpha2 = NULL)
rtwo.sided(n, alpha)
rone.sided_fixed(n, omega)
rtwo.sided_fixed(n, omega)
mpone.sided(
q,
alpha = NULL,
alpha1 = NULL,
alpha2 = NULL,
lower.tail = TRUE,
log.p = FALSE
)
mptwo.sided(q, alpha, lower.tail = TRUE, log.p = FALSE)
mpone.sided_fixed(q, omega, lower.tail = TRUE, log.p = FALSE)
mptwo.sided_fixed(q, omega, lower.tail = TRUE, log.p = FALSE)
mqone.sided(
p,
alpha = NULL,
alpha1 = NULL,
alpha2 = NULL,
lower.tail = TRUE,
log.p = FALSE
)
mqtwo.sided(p, alpha, lower.tail = TRUE, log.p = FALSE)
mqone.sided_fixed(p, omega, lower.tail = TRUE, log.p = FALSE)
mqtwo.sided_fixed(p, omega, lower.tail = TRUE, log.p = FALSE)
vector or matrix of quantiles.
vector or matrix with concentration parameters for the Dirichlet distribution for a monotonic one.sided or a two.sided weight function.
vector or matrix with concentration parameters for the Dirichlet distribution for the expected direction of non-monotonic one.sided of weight function.
vector or matrix with concentration parameters for the Dirichlet distribution for the unexpected direction of non-monotonic one.sided of weight function.
logical; if TRUE
, probabilities
p
are given as log(p)
.
vector or matrix of fixed probabilities for a one.sided or a two.sided weight function.
number of observations.
logical; if TRUE
(default), probabilities
are \(P[X \le x]\), otherwise, \(P[X \ge x]\).
vector of probabilities.
mdone.sided
, mdtwo.sided
, mdone.sided_fixed
,
and mdtwo.sided_fixed
give the marginal density,
mpone.sided
, mptwo.sided
, mpone.sided_fixed
,
and mptwo.sided_fixed
give the marginal distribution function,
mqone.sided
, mqtwo.sided
, mqone.sided_fixed
,
and mqtwo.sided_fixed
give the marginal quantile function,
and rone.sided
, rtwo.sided
, rone.sided_fixed
,
and rtwo.sided_fixed
generate random deviates.
# draw samples from a two-sided weight function
rtwo.sided(10, alpha = c(1, 1))
#> [,1] [,2]
#> [1,] 0.46439642 1
#> [2,] 0.04716989 1
#> [3,] 0.71910622 1
#> [4,] 0.95906075 1
#> [5,] 0.94976423 1
#> [6,] 0.25670743 1
#> [7,] 0.88470137 1
#> [8,] 0.88922749 1
#> [9,] 0.66088187 1
#> [10,] 0.72228484 1
# draw samples from a monotone one-sided weight function
rone.sided(10, alpha = c(1, 1, 1))
#> [,1] [,2] [,3]
#> [1,] 0.01313900 0.7528822 1
#> [2,] 0.39695058 0.9523203 1
#> [3,] 0.51717076 0.6036944 1
#> [4,] 0.32504571 0.5099114 1
#> [5,] 0.13829948 0.7936787 1
#> [6,] 0.05130129 0.9083622 1
#> [7,] 0.03663619 0.3303725 1
#> [8,] 0.50885810 0.7152161 1
#> [9,] 0.18002423 0.7771316 1
#> [10,] 0.19877398 0.6412896 1
# draw samples from a non-monotone one-sided weight function
rone.sided(10, alpha1 = c(1, 1), alpha2 = c(1, 1))
#> [,1] [,2] [,3]
#> [1,] 0.7060430 0.20216529 1
#> [2,] 0.9672913 0.01495326 1
#> [3,] 0.8185752 0.77588693 1
#> [4,] 0.5598840 0.03990301 1
#> [5,] 0.7815403 0.58610764 1
#> [6,] 0.9984784 0.87007164 1
#> [7,] 0.9133474 0.34747997 1
#> [8,] 0.6409038 0.01194426 1
#> [9,] 0.9905972 0.04908653 1
#> [10,] 0.9509986 0.20771290 1