mix_posteriors
R/model-averaging.R
as_mixed_posteriors.Rd
Creates a model-averages posterior distributions on a single model that allows mimicking the mix_posteriors functionality. This function is useful when the model-averaged ensemble is based on prior_spike_and_slab or prior_mixture priors - the model-averaging is done within the model.
as_mixed_posteriors(
model,
parameters,
conditional = NULL,
conditional_rule = "AND",
force_plots = FALSE
)
model fit via the JAGS_fit function
vector of parameters names for which inference should be drawn
a character vector of parameters to be conditioned on
a character string specifying the rule for conditioning. Either "AND" or "OR". Defaults to "AND".
temporal argument allowing to generate conditional posterior samples suitable for prior and posterior plots. Only available when conditioning on a single parameter.
as_mix_posteriors
returns a named list of mixed posterior
distributions (either a vector of matrix).