Computes inclusion Bayes factors based on prior model probabilities, posterior model probabilities (or marginal likelihoods), and indicator whether the models represent the null or alternative hypothesis.

inclusion_BF(prior_probs, post_probs, margliks, is_null)

Arguments

prior_probs

vector of prior model probabilities

post_probs

vector of posterior model probabilities

margliks

vector of marginal likelihoods.

is_null

logical vector of indicators whether the model corresponds to the null or alternative hypothesis (or an integer vector indexing models corresponding to the null hypothesis)

Value

inclusion_BF returns a Bayes factor.

Details

Supplying margliks as the input is preferred since it is better at dealing with under/overflow (posterior probabilities are very close to either 0 or 1). In case that both the post_probs and margliks are supplied, the results are based on margliks.