Skip to contents

Complete Results

These results are based on Bom (2019) data-generating mechanism with a total of 504 conditions.

Average Performance

Method performance measures are aggregated across all simulated conditions to provide an overall impression of method performance. However, keep in mind that a method with a high overall ranking is not necessarily the “best” method for a particular application. To select a suitable method for your application, consider also non-aggregated performance measures in conditions most relevant to your application.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 RoBMA (PSMA) 0.219 1 RoBMA (PSMA) 0.219
2 WILS (default) 0.272 2 WILS (default) 0.272
3 WAAPWLS (default) 0.298 3 WAAPWLS (default) 0.298
4 PEESE (default) 0.299 4 PEESE (default) 0.299
5 FMA (default) 0.310 5 FMA (default) 0.310
5 WLS (default) 0.310 5 WLS (default) 0.310
7 PETPEESE (default) 0.330 7 PETPEESE (default) 0.330
8 EK (default) 0.338 8 EK (default) 0.338
9 PET (default) 0.340 9 PET (default) 0.340
10 trimfill (default) 0.362 10 trimfill (default) 0.362
11 AK (AK2) 0.384 11 AK (AK2) 0.451
12 RMA (default) 0.452 12 RMA (default) 0.452
13 mean (default) 0.481 13 mean (default) 0.481
14 AK (AK1) 0.533 14 AK (AK1) 0.522
15 pcurve (default) 0.596 15 pcurve (default) 0.569
16 SM (3PSM) 0.634 16 SM (3PSM) 0.629
17 SM (4PSM) 0.798 17 SM (4PSM) 0.789
18 puniform (default) 1.015 18 puniform (default) 0.964
19 puniform (star) 161.138 19 puniform (star) 161.138

RMSE (Root Mean Square Error) is an overall summary measure of estimation performance that combines bias and empirical SE. RMSE is the square root of the average squared difference between the meta-analytic estimate and the true effect across simulation runs. A lower RMSE indicates a better method.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 PET (default) -0.015 1 PET (default) -0.015
2 EK (default) -0.015 2 EK (default) -0.015
3 PETPEESE (default) 0.041 3 pcurve (default) 0.031
4 AK (AK2) -0.044 4 PETPEESE (default) 0.041
5 RoBMA (PSMA) -0.063 5 AK (AK2) 0.051
6 pcurve (default) 0.072 6 RoBMA (PSMA) -0.063
7 WILS (default) -0.080 7 WILS (default) -0.080
8 PEESE (default) 0.133 8 PEESE (default) 0.133
9 SM (4PSM) -0.161 9 SM (4PSM) -0.163
10 WAAPWLS (default) 0.185 10 SM (3PSM) -0.183
11 trimfill (default) 0.185 11 WAAPWLS (default) 0.185
12 SM (3PSM) -0.189 12 trimfill (default) 0.185
13 FMA (default) 0.207 13 FMA (default) 0.207
14 WLS (default) 0.207 14 WLS (default) 0.207
15 AK (AK1) 0.260 15 AK (AK1) 0.260
16 RMA (default) 0.360 16 RMA (default) 0.360
17 mean (default) 0.388 17 mean (default) 0.388
18 puniform (default) 0.744 18 puniform (default) 0.751
19 puniform (star) -13.379 19 puniform (star) -13.379

Bias is the average difference between the meta-analytic estimate and the true effect across simulation runs. Ideally, this value should be close to 0.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 FMA (default) 0.156 1 FMA (default) 0.156
1 WLS (default) 0.156 1 WLS (default) 0.156
3 WAAPWLS (default) 0.168 3 WAAPWLS (default) 0.168
4 RMA (default) 0.174 4 RMA (default) 0.174
5 mean (default) 0.182 5 mean (default) 0.182
6 RoBMA (PSMA) 0.184 6 RoBMA (PSMA) 0.184
7 pcurve (default) 0.192 7 PEESE (default) 0.196
8 PEESE (default) 0.196 8 pcurve (default) 0.202
9 trimfill (default) 0.223 9 trimfill (default) 0.223
10 WILS (default) 0.238 10 WILS (default) 0.238
11 PETPEESE (default) 0.281 11 PETPEESE (default) 0.281
12 EK (default) 0.307 12 EK (default) 0.307
13 PET (default) 0.309 13 PET (default) 0.309
14 AK (AK1) 0.343 14 AK (AK1) 0.333
15 AK (AK2) 0.369 15 puniform (default) 0.353
16 puniform (default) 0.401 16 AK (AK2) 0.410
17 SM (3PSM) 0.576 17 SM (3PSM) 0.571
18 SM (4PSM) 0.766 18 SM (4PSM) 0.756
19 puniform (star) 160.321 19 puniform (star) 160.321

The empirical SE is the standard deviation of the meta-analytic estimate across simulation runs. A lower empirical SE indicates less variability and better method performance.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 RoBMA (PSMA) 1.384 1 RoBMA (PSMA) 1.384
2 EK (default) 1.927 2 EK (default) 1.927
3 PET (default) 2.029 3 PET (default) 2.029
4 AK (AK2) 2.249 4 WILS (default) 2.796
5 WILS (default) 2.796 5 PETPEESE (default) 2.960
6 PETPEESE (default) 2.960 6 SM (3PSM) 3.040
7 SM (3PSM) 3.099 7 puniform (star) 3.290
8 puniform (star) 3.290 8 SM (4PSM) 3.405
9 PEESE (default) 3.641 9 PEESE (default) 3.641
10 WAAPWLS (default) 4.392 10 AK (AK2) 3.988
11 trimfill (default) 4.637 11 WAAPWLS (default) 4.392
12 WLS (default) 5.227 12 trimfill (default) 4.637
13 SM (4PSM) 5.934 13 WLS (default) 5.227
14 RMA (default) 8.106 14 RMA (default) 8.106
15 FMA (default) 8.872 15 FMA (default) 8.872
16 AK (AK1) 11.720 16 AK (AK1) 10.803
17 mean (default) 14.294 17 mean (default) 14.294
18 puniform (default) 23.303 18 puniform (default) 23.166
19 pcurve (default) NaN 19 pcurve (default) NaN

The interval score measures the accuracy of a confidence interval by combining its width and coverage. It penalizes intervals that are too wide or that fail to include the true value. A lower interval score indicates a better method.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 RoBMA (PSMA) 0.952 1 RoBMA (PSMA) 0.952
2 AK (AK2) 0.933 2 SM (4PSM) 0.911
3 SM (4PSM) 0.913 3 SM (3PSM) 0.888
4 SM (3PSM) 0.891 4 puniform (star) 0.882
5 puniform (star) 0.882 5 AK (AK2) 0.880
6 EK (default) 0.876 6 EK (default) 0.876
7 PET (default) 0.852 7 PET (default) 0.852
8 PETPEESE (default) 0.796 8 PETPEESE (default) 0.796
9 WILS (default) 0.674 9 WILS (default) 0.674
10 AK (AK1) 0.632 10 AK (AK1) 0.632
11 PEESE (default) 0.632 11 PEESE (default) 0.632
12 trimfill (default) 0.609 12 trimfill (default) 0.609
13 WAAPWLS (default) 0.599 13 WAAPWLS (default) 0.599
14 RMA (default) 0.560 14 RMA (default) 0.560
15 WLS (default) 0.557 15 WLS (default) 0.557
16 puniform (default) 0.373 16 puniform (default) 0.374
17 FMA (default) 0.329 17 FMA (default) 0.329
18 mean (default) 0.308 18 mean (default) 0.308
19 pcurve (default) NaN 19 pcurve (default) NaN

95% CI coverage is the proportion of simulation runs in which the 95% confidence interval contained the true effect. Ideally, this value should be close to the nominal level of 95%.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 FMA (default) 0.154 1 FMA (default) 0.154
2 mean (default) 0.228 2 mean (default) 0.228
3 WLS (default) 0.535 3 WLS (default) 0.535
4 WILS (default) 0.566 4 WILS (default) 0.566
5 WAAPWLS (default) 0.601 5 WAAPWLS (default) 0.601
6 PEESE (default) 0.660 6 PEESE (default) 0.660
7 RoBMA (PSMA) 0.841 7 puniform (default) 0.812
8 trimfill (default) 0.845 8 RoBMA (PSMA) 0.841
9 RMA (default) 0.872 9 trimfill (default) 0.845
10 puniform (star) 0.894 10 RMA (default) 0.872
11 puniform (default) 0.907 11 puniform (star) 0.894
12 PETPEESE (default) 0.995 12 PETPEESE (default) 0.995
13 PET (default) 1.139 13 PET (default) 1.139
14 EK (default) 1.424 14 EK (default) 1.424
15 AK (AK2) 1.883 15 SM (3PSM) 2.049
16 SM (3PSM) 2.198 16 SM (4PSM) 2.684
17 SM (4PSM) 5.218 17 AK (AK2) 2.716
18 AK (AK1) 6.939 18 AK (AK1) 6.022
19 pcurve (default) NaN 19 pcurve (default) NaN

95% CI width is the average length of the 95% confidence interval for the true effect. A lower average 95% CI length indicates a better method.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Log Value Rank Method Log Value
1 RoBMA (PSMA) 5.057 1 RoBMA (PSMA) 5.057
2 AK (AK2) 2.941 2 EK (default) 2.664
3 EK (default) 2.664 3 PET (default) 2.663
4 PET (default) 2.663 4 PETPEESE (default) 2.456
5 PETPEESE (default) 2.456 5 AK (AK2) 2.249
6 puniform (star) 2.109 6 SM (4PSM) 2.184
7 SM (4PSM) 2.103 7 puniform (star) 2.109
8 SM (3PSM) 1.949 8 SM (3PSM) 1.972
9 AK (AK1) 1.327 9 WILS (default) 1.326
10 WILS (default) 1.326 10 AK (AK1) 1.325
11 PEESE (default) 1.164 11 PEESE (default) 1.164
12 WAAPWLS (default) 1.158 12 WAAPWLS (default) 1.158
13 RMA (default) 1.079 13 RMA (default) 1.079
14 trimfill (default) 1.030 14 trimfill (default) 1.030
15 WLS (default) 1.010 15 WLS (default) 1.010
16 puniform (default) 0.528 16 puniform (default) 0.530
17 FMA (default) 0.423 17 FMA (default) 0.423
18 mean (default) 0.391 18 mean (default) 0.391
19 pcurve (default) NaN 19 pcurve (default) NaN

The positive likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a positive likelihood ratio greater than 1 (or a log positive likelihood ratio greater than 0). A higher (log) positive likelihood ratio indicates a better method.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Log Value Rank Method Log Value
1 PETPEESE (default) -4.980 1 PETPEESE (default) -4.980
2 PET (default) -4.830 2 AK (AK2) -4.901
3 EK (default) -4.830 3 PET (default) -4.830
4 SM (3PSM) -4.506 4 EK (default) -4.830
5 WILS (default) -4.255 5 SM (3PSM) -4.576
6 puniform (star) -4.175 6 SM (4PSM) -4.332
7 WAAPWLS (default) -3.973 7 WILS (default) -4.255
8 RoBMA (PSMA) -3.921 8 puniform (star) -4.175
9 PEESE (default) -3.884 9 WAAPWLS (default) -3.973
10 SM (4PSM) -3.803 10 RoBMA (PSMA) -3.921
11 AK (AK2) -3.707 11 PEESE (default) -3.884
12 trimfill (default) -3.441 12 trimfill (default) -3.441
13 WLS (default) -3.338 13 WLS (default) -3.338
14 AK (AK1) -3.142 14 AK (AK1) -3.142
15 RMA (default) -3.006 15 RMA (default) -3.006
16 FMA (default) -2.869 16 FMA (default) -2.869
17 puniform (default) -2.752 17 puniform (default) -2.757
18 mean (default) -2.536 18 mean (default) -2.536
19 pcurve (default) NaN 19 pcurve (default) NaN

The negative likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a non-significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a negative likelihood ratio less than 1 (or a log negative likelihood ratio less than 0). A lower (log) negative likelihood ratio indicates a better method.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 RoBMA (PSMA) 0.020 1 RoBMA (PSMA) 0.020
2 AK (AK2) 0.048 2 SM (4PSM) 0.097
3 SM (4PSM) 0.098 3 SM (3PSM) 0.119
4 SM (3PSM) 0.118 4 PET (default) 0.135
5 PET (default) 0.135 5 EK (default) 0.135
6 EK (default) 0.135 6 AK (AK2) 0.150
7 PETPEESE (default) 0.161 7 PETPEESE (default) 0.161
8 puniform (star) 0.198 8 puniform (star) 0.198
9 WILS (default) 0.264 9 WILS (default) 0.264
10 PEESE (default) 0.477 10 PEESE (default) 0.477
11 WAAPWLS (default) 0.504 11 WAAPWLS (default) 0.504
12 trimfill (default) 0.516 12 trimfill (default) 0.516
13 AK (AK1) 0.555 13 AK (AK1) 0.555
14 WLS (default) 0.573 14 WLS (default) 0.573
15 RMA (default) 0.583 15 RMA (default) 0.583
16 puniform (default) 0.757 16 puniform (default) 0.755
17 FMA (default) 0.795 17 FMA (default) 0.795
18 mean (default) 0.806 18 mean (default) 0.806
19 pcurve (default) NaN 19 pcurve (default) NaN

The type I error rate is the proportion of simulation runs in which the null hypothesis of no effect was incorrectly rejected when it was true. Ideally, this value should be close to the nominal level of 5%.

Conditional on Convergence
Replacement if Non-Convergence
Rank Method Value Rank Method Value
1 puniform (default) 0.998 1 puniform (default) 0.998
2 mean (default) 0.994 2 mean (default) 0.994
3 FMA (default) 0.994 3 FMA (default) 0.994
4 WLS (default) 0.945 4 WLS (default) 0.945
5 AK (AK1) 0.940 5 AK (AK1) 0.940
6 RMA (default) 0.933 6 RMA (default) 0.933
7 WAAPWLS (default) 0.926 7 WAAPWLS (default) 0.926
8 PEESE (default) 0.919 8 PEESE (default) 0.919
9 trimfill (default) 0.914 9 trimfill (default) 0.914
10 PETPEESE (default) 0.859 10 PETPEESE (default) 0.859
11 puniform (star) 0.852 11 puniform (star) 0.852
12 WILS (default) 0.848 12 AK (AK2) 0.849
13 EK (default) 0.826 13 WILS (default) 0.848
14 PET (default) 0.826 14 EK (default) 0.826
15 AK (AK2) 0.793 15 PET (default) 0.826
16 SM (3PSM) 0.763 16 SM (4PSM) 0.774
17 SM (4PSM) 0.744 17 SM (3PSM) 0.773
18 RoBMA (PSMA) 0.684 18 RoBMA (PSMA) 0.684
19 pcurve (default) NaN 19 pcurve (default) NaN

The power is the proportion of simulation runs in which the null hypothesis of no effect was correctly rejected when the alternative hypothesis was true. A higher power indicates a better method.

By-Condition Performance (Conditional on Method Convergence)

The results below are conditional on method convergence. Note that the methods might differ in convergence rate and are therefore not compared on the same data sets.

Raincloud plot showing convergence rates across different methods

Raincloud plot showing RMSE (Root Mean Square Error) across different methods

RMSE (Root Mean Square Error) is an overall summary measure of estimation performance that combines bias and empirical SE. RMSE is the square root of the average squared difference between the meta-analytic estimate and the true effect across simulation runs. A lower RMSE indicates a better method. Values larger than 0.5 are visualized as 0.5.

Raincloud plot showing bias across different methods

Bias is the average difference between the meta-analytic estimate and the true effect across simulation runs. Ideally, this value should be close to 0. Values lower than -0.5 or larger than 0.5 are visualized as -0.5 and 0.5 respectively.

Raincloud plot showing bias across different methods

The empirical SE is the standard deviation of the meta-analytic estimate across simulation runs. A lower empirical SE indicates less variability and better method performance. Values larger than 0.5 are visualized as 0.5.

Raincloud plot showing 95% confidence interval width across different methods

The interval score measures the accuracy of a confidence interval by combining its width and coverage. It penalizes intervals that are too wide or that fail to include the true value. A lower interval score indicates a better method. Values larger than 100 are visualized as 100.

Raincloud plot showing 95% confidence interval coverage across different methods

95% CI coverage is the proportion of simulation runs in which the 95% confidence interval contained the true effect. Ideally, this value should be close to the nominal level of 95%.

Raincloud plot showing 95% confidence interval width across different methods

95% CI width is the average length of the 95% confidence interval for the true effect. A lower average 95% CI length indicates a better method.

Raincloud plot showing positive likelihood ratio across different methods

The positive likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a positive likelihood ratio greater than 1 (or a log positive likelihood ratio greater than 0). A higher (log) positive likelihood ratio indicates a better method.

Raincloud plot showing negative likelihood ratio across different methods

The negative likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a non-significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a negative likelihood ratio less than 1 (or a log negative likelihood ratio less than 0). A lower (log) negative likelihood ratio indicates a better method.

Raincloud plot showing Type I Error rates across different methods

The type I error rate is the proportion of simulation runs in which the null hypothesis of no effect was incorrectly rejected when it was true. Ideally, this value should be close to the nominal level of 5%.

Raincloud plot showing statistical power across different methods

The power is the proportion of simulation runs in which the null hypothesis of no effect was correctly rejected when the alternative hypothesis was true. A higher power indicates a better method.

By-Condition Performance (Replacement in Case of Non-Convergence)

The results below incorporate method replacement to handle non-convergence. If a method fails to converge, its results are replaced with the results from a simpler method (e.g., random-effects meta-analysis without publication bias adjustment). This emulates what a data analyst may do in practice in case a method does not converge. However, note that these results do not correspond to “pure” method performance as they might combine multiple different methods. See Method Replacement Strategy for details of the method replacement specification.

Raincloud plot showing convergence rates across different methods

Raincloud plot showing RMSE (Root Mean Square Error) across different methods

RMSE (Root Mean Square Error) is an overall summary measure of estimation performance that combines bias and empirical SE. RMSE is the square root of the average squared difference between the meta-analytic estimate and the true effect across simulation runs. A lower RMSE indicates a better method. Values larger than 0.5 are visualized as 0.5.

Raincloud plot showing bias across different methods

Bias is the average difference between the meta-analytic estimate and the true effect across simulation runs. Ideally, this value should be close to 0. Values lower than -0.5 or larger than 0.5 are visualized as -0.5 and 0.5 respectively.

Raincloud plot showing bias across different methods

The empirical SE is the standard deviation of the meta-analytic estimate across simulation runs. A lower empirical SE indicates less variability and better method performance. Values larger than 0.5 are visualized as 0.5.

Raincloud plot showing 95% confidence interval width across different methods

The interval score measures the accuracy of a confidence interval by combining its width and coverage. It penalizes intervals that are too wide or that fail to include the true value. A lower interval score indicates a better method. Values larger than 100 are visualized as 100.

Raincloud plot showing 95% confidence interval coverage across different methods

95% CI coverage is the proportion of simulation runs in which the 95% confidence interval contained the true effect. Ideally, this value should be close to the nominal level of 95%.

Raincloud plot showing 95% confidence interval width across different methods

95% CI width is the average length of the 95% confidence interval for the true effect. A lower average 95% CI length indicates a better method.

Raincloud plot showing positive likelihood ratio across different methods

The positive likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a positive likelihood ratio greater than 1 (or a log positive likelihood ratio greater than 0). A higher (log) positive likelihood ratio indicates a better method.

Raincloud plot showing negative likelihood ratio across different methods

The negative likelihood ratio is an overall summary measure of hypothesis testing performance that combines power and type I error rate. It indicates how much a non-significant test result changes the odds of the alternative hypothesis versus the null hypothesis. A useful method has a negative likelihood ratio less than 1 (or a log negative likelihood ratio less than 0). A lower (log) negative likelihood ratio indicates a better method.

Raincloud plot showing Type I Error rates across different methods

The type I error rate is the proportion of simulation runs in which the null hypothesis of no effect was incorrectly rejected when it was true. Ideally, this value should be close to the nominal level of 5%.

Raincloud plot showing statistical power across different methods

The power is the proportion of simulation runs in which the null hypothesis of no effect was correctly rejected when the alternative hypothesis was true. A higher power indicates a better method.

Session Info

This report was compiled on Thu Oct 23 13:57:07 2025 (UTC) using the following computational environment

## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
##  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
##  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
## [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
## 
## time zone: UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] scales_1.4.0                   ggdist_3.3.3                  
## [3] ggplot2_4.0.0                  PublicationBiasBenchmark_0.1.0
## 
## loaded via a namespace (and not attached):
##  [1] generics_0.1.4       sandwich_3.1-1       sass_0.4.10         
##  [4] xml2_1.4.0           stringi_1.8.7        lattice_0.22-7      
##  [7] httpcode_0.3.0       digest_0.6.37        magrittr_2.0.4      
## [10] evaluate_1.0.5       grid_4.5.1           RColorBrewer_1.1-3  
## [13] fastmap_1.2.0        jsonlite_2.0.0       crul_1.6.0          
## [16] urltools_1.7.3.1     httr_1.4.7           purrr_1.1.0         
## [19] viridisLite_0.4.2    textshaping_1.0.4    jquerylib_0.1.4     
## [22] Rdpack_2.6.4         cli_3.6.5            rlang_1.1.6         
## [25] triebeard_0.4.1      rbibutils_2.3        withr_3.0.2         
## [28] cachem_1.1.0         yaml_2.3.10          tools_4.5.1         
## [31] memoise_2.0.1        kableExtra_1.4.0     curl_7.0.0          
## [34] vctrs_0.6.5          R6_2.6.1             clubSandwich_0.6.1  
## [37] zoo_1.8-14           lifecycle_1.0.4      stringr_1.5.2       
## [40] fs_1.6.6             htmlwidgets_1.6.4    ragg_1.5.0          
## [43] pkgconfig_2.0.3      desc_1.4.3           osfr_0.2.9          
## [46] pkgdown_2.1.3        bslib_0.9.0          pillar_1.11.1       
## [49] gtable_0.3.6         Rcpp_1.1.0           glue_1.8.0          
## [52] systemfonts_1.3.1    xfun_0.53            tibble_3.3.0        
## [55] rstudioapi_0.17.1    knitr_1.50           farver_2.1.2        
## [58] htmltools_0.5.8.1    labeling_0.4.3       svglite_2.2.2       
## [61] rmarkdown_2.30       compiler_4.5.1       S7_0.2.0            
## [64] distributional_0.5.0