plot.RoBTT
allows to visualize
different "RoBTT"
object parameters in various
ways. See type
for the different model types.
# S3 method for RoBTT
plot(
x,
parameter = "mu",
transform_rho = FALSE,
conditional = FALSE,
plot_type = "base",
prior = FALSE,
dots_prior = NULL,
...
)
a fitted 'RoBTT' object
a parameter to be plotted. Defaults to
"delta"
(for the effect size). The additional options
are "rho"
(for the heterogeneity),
"nu"
(for the degrees of freedom).
whether rho parameter should be translated into log standard deviation ratio
whether conditional estimates should be
plotted. Defaults to FALSE
which plots the model-averaged
estimates.
whether to use a base plot "base"
or ggplot2 "ggplot"
for plotting. Defaults to
"base"
.
whether prior distribution should be added to
figure. Defaults to FALSE
.
list of additional graphical arguments
to be passed to the plotting function of the prior
distribution. Supported arguments are lwd
,
lty
, col
, and col.fill
, to adjust
the line thickness, line type, line color, and fill color
of the prior distribution respectively.
list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are lwd
, lty
, col
, col.fill
,
xlab
, ylab
, main
, xlim
, ylim
to adjust the line thickness, line type, line color, fill color,
x-label, y-label, title, x-axis range, and y-axis range
respectively.
plot.RoBTT
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.
if (FALSE) {
data("fertilization", package = "RoBTT")
fit <- RoBTT(
x1 = fertilization$Self,
x2 = fertilization$Crossed,
prior_delta = prior("cauchy", list(0, 1/sqrt(2))),
prior_rho = prior("beta", list(3, 3)),
seed = 1,
chains = 1,
warmup = 1000,
iter = 2000,
control = set_control(adapt_delta = 0.95)
)
# plot the model-averaged effect size estimate
plot(fit, parameter = "delta")
# plot prior and posterior of the conditional effect size estimate
plot(fit, parameter = "delta", conditional = TRUE, prior = TRUE)
}