plot_models
plots individual models'
estimates for a "RoBSA"
object.
plot_models(
x,
parameter = NULL,
conditional = FALSE,
plot_type = "base",
order = "decreasing",
order_by = "model",
...
)
a fitted RoBSA object
a name of parameter to be plotted. Defaults to the first regression parameter if left unspecified.
whether conditional estimates should be
plotted. Defaults to FALSE
which plots the model-averaged
estimates.
whether to use a base plot "base"
or ggplot2 "ggplot"
for plotting. Defaults to
"base"
.
how the models should be ordered.
Defaults to "decreasing"
which orders them in decreasing
order in accordance to order_by
argument. The alternative is
"increasing"
.
what feature should be use to order the models.
Defaults to "model"
which orders the models according to
their number. The alternatives are "estimate"
(for the effect
size estimates), "probability"
(for the posterior model probability),
and "BF"
(for the inclusion Bayes factor).
list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are lwd
, lty
, col
, col.fill
,
xlab
, ylab
, main
, xlim
, ylim
to adjust the line thickness, line type, line color, fill color,
x-label, y-label, title, x-axis range, and y-axis range
respectively.
plot_models
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.
if (FALSE) {
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)
df <- data.frame(
time = veteran$time / 12,
status = veteran$status,
treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
karno_scaled = veteran$karno / 100
)
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
Surv(time, status) ~ treatment + karno_scaled,
data = df,
priors = list(
treatment = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
truncation = list(0, Inf), contrast = "treatment"),
karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
),
test_predictors = "treatment",
prior_intercept = priors[["intercept"]],
prior_aux = priors[["aux"]],
parallel = TRUE, seed = 1
)
# plot posterior distribution of the treatment effect from each model
plot_models(fit, parameter = "treatment")
}