plot.RoBSA
allows to visualize
posterior distribution of different "RoBSA"
object
parameters. See plot_survival
for plotting the survival
ways. See type
for the different model types.
# S3 method for RoBSA
plot(
x,
parameter = NULL,
conditional = FALSE,
plot_type = "base",
prior = FALSE,
dots_prior = NULL,
...
)
a fitted RoBSA object
a name of parameter to be plotted. Defaults to
the first regression parameter if left unspecified. Use
"intercept"
and "aux"
to plot the intercepts and
auxiliary parameters of each distribution family.
whether conditional estimates should be
plotted. Defaults to FALSE
which plots the model-averaged
estimates.
whether to use a base plot "base"
or ggplot2 "ggplot"
for plotting. Defaults to
"base"
.
whether prior distribution should be added to
figure. Defaults to FALSE
.
list of additional graphical arguments
to be passed to the plotting function of the prior
distribution. Supported arguments are lwd
,
lty
, col
, and col.fill
, to adjust
the line thickness, line type, line color, and fill color
of the prior distribution respectively.
list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are lwd
, lty
, col
, col.fill
,
xlab
, ylab
, main
, xlim
, ylim
to adjust the line thickness, line type, line color, fill color,
x-label, y-label, title, x-axis range, and y-axis range
respectively.
plot.RoBSA
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.
if (FALSE) {
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)
df <- data.frame(
time = veteran$time / 12,
status = veteran$status,
treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
karno_scaled = veteran$karno / 100
)
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
Surv(time, status) ~ treatment + karno_scaled,
data = df,
priors = list(
treatment = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
truncation = list(0, Inf), contrast = "treatment"),
karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
),
test_predictors = "treatment",
prior_intercept = priors[["intercept"]],
prior_aux = priors[["aux"]],
parallel = TRUE, seed = 1
)
# plot posterior distribution of the treatment effect
plot(fit, parameter = "treatment")
}